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Abstract-Measurements, both macroscopic and microscopic, of longitudinal wave motions propagating in the
direction of reinforcing fibers were made on laboratory fabricated fiber-reinforced composites. Two waves
with different propagation speeds and amplitudes were observed. Results are in good agreement with the
predictions based on the mixture theory and the effective stiffness theory.

INTRODUCTION
During the last decade, the subject of wave motions in a fiber-reinforced composite has been
extensively studied by many investigators. We cite here the analytical works by Sve[l, 2],t the
"effective stiffness theory" by Achenbach, Sun and Herrmann [3-5] and the "mixture theory" by
Bedford[6] and Hegemier[7-9]. Despite the differences in approach and methods, the same
conclusion regarding the dispersive characteristics of waves in such a material has been reached
by the above authors. Furthermore, analytical studies on the micro-motions in a composite have
also been carried out in detail by these authors. The present investigation is closely related to the
above analytical studies.

Experimental investigations on the dispersion of waves in a fiber-reinforced composite were
carried out by Sutherland[lO] and Tauchert[ll]. The experimentally determined dispersion
curves were in good agreement with the analytical predictions. Studies of the propagation of a
transient pulse in a fiber-reinforced composite were carried out both analytically and
experimentally by Peck[12], Whittier [13], and more recently by Sve[14]. In their experiments,
one side of the specimen was subjected to an impulse generated in a shock tube, measurement of
the surface velocity was made on the opposite side of the specimen by means of a capacitance
probe. Since the capacitance probe has a finite probe surface, the measurements made by these
authors are therefore the macroscopic motion in the specimen, i.e. an average velocity over the
effective area of the probe. Good agreement between the measured results and analytical
predictions was also reported.

In this paper, results from the experimental studies of wave motions, both macroscopic and
microscopic, in a laboratory fabricated fiber-reinforced composite are presented. For the
microscopic motion an optical interferometer [15] which is capable of making a point-wise
measurement on the surface of the specimen was used to measure the motion of a fiber and the
motion of a point on the matrix surface. For the macroscopic motion, a piezo-electric transducer
was used to monitor the average motion on the surface of the specimen. In the following sections,
the specimen used in the investigation will first be described. It is then followed by a detailed
description of the experimental arrangement and method. To facilitate the interpretation of the
experimental results, wave analyses based on the mixture theory [8] and a simplified effective
stiffness theory [16] are carried out in section three. The comparison and discussion of the
experimental findings with the predictions from these two theories are presented in the
conclusion of the paper.

DESCRIPTION OF SPECIMEN

The specimens used by Sve[14] were made of alternating layers of thin plastic and metallic
sheets (the approximate thickness of each sheet was 0.762 mm) bonded together by a special type
of adhesive. Sutherland [10] used an aluminum-tungsten composite in his experiment. The
specimen was fabricated by embedding 0.127 mm dia. tungsten wires in an aluminum matrix by

tNumbers in the bracket designate the references at the end of paper.
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means of the tape lamination technique. The specimens adopted by the above investigators were,
however, not suitable for the present investigation. Since the purpose of this investigation was to
study the micro- and macro-motion of the constituents of the composite material, very thin fibers
or laminates and very dense fiber geometry would make an accurate and meaningful
micro-motion measurement on an individual component (say fiber of the specimen) very difficult.
In view of this, a specially designed specimen was fabricated for this investigation.

The fiber-reinforced specimens used in this investigation were made of plastic material
reinforced by parallel steel wires. The matrix plastic material is a photoelastic sensitive material
known as PLM-4 supplied by the Photolastic Company[l8]. The steel wires were first
straightened and then carefully installed into a mold of hexagonal geometry. The liquid plastic
was then cast into this mold. After solidification, the fiber reinforcedplastic was removed from the
mold, machined and polished to the desired dimensions. The residual stress in the specimen due
to casting and machining was checked by a polariscope, and if present was removed by repeated
annealling and polishing. A thin layer (approximate thickness = 6 A,) of silver was afterwards
vapor-deposited on one surface of the specimen for reflecting the light beam from the optical
interferometer. A photograph of a representative specimen is shown in Fig. 1. The geometrical
description of specimens used in this investigation and the material properties of fiber and matrix
material are tabulated in Table 1. It should be mentioned here that the material properties of
PLM-4 epoxy presented in Table 1 were experimentally verified by measuring the shear and
dilatational wave speeds in this material. Finally, the dispersion curves of a representative
specimen A-4 calculated from the mixture theory[8] and the effective stiffness theory[l6] are
depicted in Fig. 2. To facilitate the discussion, the numerical presentations in the subsequent
sections will be based on the data from this specimen.
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Fig. I. A-4 specimen. Fig, 2, Dispersion curves of A-4 specimen.

EXPERIMENTAL ARRANGEMENT

In view of the dispersion curves shown in Fig. 2, it becomes apparent that for a meaningful
study of the wave motions in this specimen, the testing frequency range should be broad enough
to include the cut-off frequency We. To satisfy this requirement, the test frequency in this
investigation ranged from 50 kHz to 1.5 mHz.

The experimental arrangement for the macroscopic motion studies is sketched in Fig. 3. It is
similar to that used by Tauchert[ll]. Two identical x-cut Lead Zirconate Titanate disks (1" in
dia., ± 5% in resonant frequency) are placed on the central portion of the opposite sides of the
specimen. One disk serves as the driver and the other serves as the receiver. A repeated wave
pulse of eight or more cycles at a given frequency was tone-bursted into the specimen by the
driving disk. The period between the wave pulses was kept long enough for the motion in the
specimen to be damped out before the arrival of the next pulse. As the transmitted wave pulse
arrives on the other side of the specimen, it is sensed by the receiving disk. Figure 4 shows the
oscilloscope pictures of a clear specimen (no reinforcing fiber) tested at a frequency of 1.1 mHz
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Table I. Specimen geometry and material properties
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Specimen Thickness Fiber Oia Fiber Spacing Mixture Theory Effective Stiffness Measured Wave
no. em em em v

l
v 2

Theory Speed

cm/lJsec
v l v 2 v l v 2

cm/vsec cm/lJsec

A-l 3.856 0.16 0.32 0.52 0.249 .574 .249 0.54 0.23

A-2 3.974 0.16 0.4 0.518 0.248 .564 .249 0.55 0.24

A-3 3.848 0.16 0.48 0.518 0.249 .554 .249 0.55 0.25

A-4 4.08 0.16 0.56 0.514 0.248 .543 .249 0.56 0.25

B-1 0.927 0.0762 0.1524 0.520 0.248 .574 .249 0.51 0.23

B-2 0.937 0.0762 0.1905 0.518 0.249 .564 .249 0.49 0.23

B-3 1.176 0.0762 0.2286 0.518 0.248 .554 .249 0.49 0.23

B-4 1.176 0.0762 0.3048 0.516 0.249 .543 .249 0.49 0.23

Properties Steel Fiber PLM-4 Liquid

Epoxy Resin

Densi ty (gm!cm3 ) 7.8 1.23

Shear Modulus ~ (dyneS!cm2 ) 8.1 x lOll 16.88 x 10 9

Lame Constant , (dynes!cm2 ) 11. 2 x loll 42.5 x 10 9

E (dynes/cm2 ) 21 x loll 44.9 x 10 9

Poissons Ratio \! 0.29 0.36

Veloei ty (met. /sec.) (di Ii tational) 5940 2492

Velocity (met. /sec.) (shear) 3220 1171
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Fig. 3. Schematic diagram of experimental arrangement for macro-motion measurement.

and a fiber-reinforced specimen tested at 58 kHz, 377 kHz, 764 kHz and 1.047 mHz. The arrival
time of the wave pulse was determined directly from the oscilloscope picture. The wave speed was
then determined by dividing the specimen thickness with the transit time. During the experiment,
the wave speed was frequently checked with an aluminum block of constant thickness to ensure
the proper functioning of the testing apparatus.

Since the output signal of the crystal depends upon the average movement of its contact
surface with the specimen, the information obtained by this means may be regarded as
macroscopic. It should be mentioned here that this method provides accurate information
concerning the arrival times of the waves, but it does not however, provide any accurate
information on the wave amplitude. The capacitance probe used by Whittier [13] Sve [14]
would be a sensor for both velocity and displacement measurement. However, the amplitude of
waves in the present arrangement proved to be too small to be measured by a capacitance probe.

The photographs in Fig. 4 clearly exhibit the wave characteristics in a fiber-reinforced
specimen. For frequencies higher than We = 0.168 mHz, there are two wave fronts as shown in
Figs. 4-2, 4-3 and 4-4; the wave speeds of these two fronts were found to be nearly constant at all
frequencies. A tabulation of these two wave speeds for all the specimens is presented in Table 1.
The significance of this finding will be discussed in detail in later sections.

An optical interferometer[l5] was used for the measurement of the micromotion in the
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FREQ. = I I mHz

2 posee

THICKNESS: 408 em
FREQ: I 047 mHz

2 posee

THICKNESS = 4 08 em ~ \..- THICKNESS: 4.08 em
FREQ. : 764 kHz 2 posee FREQ.: 377 kHz
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2 posee FREQ = 58 kHz 5 posee

Fig. 4. Macro-motions in A-4 specimen.

specimen. A schematic diagram of the optical arrangement is shown in Fig. 5. Using this
arrangement, it is possible to focus the sensing light beam on a point (small area) on the end
surface of a fiber or on a point on the matrix surface. In this investigation, measurements of fiber
and matrix movement were made on the central portion of the specimen. A photomultiplier tube
(EMI 9558B) with adequate frequency response was used to sense the optical fringe change
resulting from movement of the specimen surface. Figures 6a and 6b show the oscilloscope
records of the photomultiplier output of the matrix motion and the fiber motion of the specimen
tested at various frequencies. For the purpose of illustration, the photomultiplier output from a
clear specimen (with no reinforcing fibers) tested at 521 kHz is also shown in Fig. 6a. Since the
output of the photomultiplier is frequency modulated (i.e. one complete oscillation represents
one wave length of the laser light (A = 6280 A) change of displacement), the wave amplitude in
the clear specimen is more that one A. The reverberation of the wave inside the specimen is
clearly demonstrated in this photograph.

The amplitude of the input wave is estimated by the formulat

(1)

REFERENCE
MIRROR

LASER BEAM

, • 6~~~~~_ =~-'----I--'
LENS

BEAM
SPLITTER

PHOTOMULTIPLIER

SPECIMEN

r===' .... ORIVING
CRYSTAL

BACK MASS

Fig. 5. Optical arrangement of the interferometer.

tA discussion of this equation is presented in a later section.
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CLEAR SPECIMEN
THICKNESS" 1.3cm
FREO. " 521 kHz

THICKNESS ·4.08cm
FREO. " 80.1 kHz

2.OJUec

i fLsec .

5 fLuC

6

Fig. 00. Displacement-time records of a point on the matrix surface of specimen.
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4
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FREOUENCY .405 kHz

.-1 I-

THICKNESS· 3.97em
FREQUENCY. 83 kHz

3

5 fLsec
THICKNESS, 3.97 em
FREOUENCY • 200 kHz

I"

Fig.6b. Displacement-time records of the motion of a fiber.

where d33 is the piezo-electric charge coefficient (d33 = 280 X 10-12 meter/meter per volt/meter of
disk thickness) of the disk and V is the voltage applied to the piezo-electric disk. To facilitate
the interpretation of data, the output wave amplitude was limited below one At in all the
experiments. The amplitude of oscillation of the specimen shown in Fig. 6 can therefore be
determined directly from the picture using a calibration equation

tFor frequencies higher than 700 kHz. we were unable to generate an amplitude greater than one A.
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2h
Uout == H A (2)

where h is the measured amplitude and H is the calibration length as shown in the beginning of
each trace in Figs. 6a and 6b.

Figures 6a-2 and 6a-6 show a single wave but with different propagating speeds. Figures 6a-3,
6a-4 and 6a-5 show two waves with different propagating speeds and amplitudes. Note also that
the amplitude of the second wave in Fig. 6a-2 is slightly larger than one A. The measured wave
speeds were found consistent with those found in the macro-motion measurement. Denoting the
waves according to their arrival sequence as the 1st and 2nd waves, the amplitude-frequency
relationships of these waves are plotted with the analytical predictions in Fig. 7. Again the
discussion of these results is deferred to a later section.
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Fig. 7. Amplitude ratio vs frequency of a point on the surface of specimen.

ANALYSIS OF WAVE MOTIONS

Prior to analyzing and discussing the experimental results, it is advantageous to briefly
summarize the wave behavior in a fiber-reinforced composite predicted by the existing theories.
Based on the "effective stiffness" theory the problem of propagation of a step pressure pulse in
such a medium was studied by Sve[l7] using the "head-of-the-pulse" technique. Sve found that
when the direction of the impulse is in line with the fiber, a single pulse with small oscillations
superimposed on the main body of the pulse propagates through the composite with a constant
velocity. Applying the same technique, similar results were obtained by Martin [19] based on the
"mixture theory." The analytical predictions were found in good agreement with the
experimental results obtained by Whittier[13] and Sve[14].

Since the head-of-the-pulse method is accurate only for long times. and since the geometrical
configuration of the specimen used in this investigation is different from that used by Whittier
and Sve, it becomes necessary to reexamine the wave equations in a manner consistent with
the present experimental arrangement. For this purpose. analyses of wave motions in a
fiber-reinforced composite based on the mixture theory [8] and on the simplified effective
stiffness theory[l6] are presented in the following sections:
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(a) Wave motions based on the mixture theory [8]t
Based on this theory, the equations of motion have the form
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(3)

where u, and Um are the displacement of the reinforcing fiber and the matrix material
respectively and K* is the coupling parameter. It should be pointed out here that eqn (3) is
identical to the equation derived by Bedford[6]. Since the elastic modulus of the piezo-electric
disk (E = 9.7 x 106 psi) used in this study is much higher than the modulus of the matrix material,
the boundary condition on the forcing side of the specimen can be written as

u,(O, t) =um(O, t) =Uin sin wt[H(t) - H(t - T)] (4)

where Uin is the amplitude of oscillation, w is the angular frequency, H(t) is the Heaviside step
function, and T is the time duration of the pulse. For mathematical simplicity, the specimen is
regarded as a semi-infinite medium. This assumption does not satisfy the actual test condition.
However, since only the transient wave is of the main interest here, the assumption of a
semi-infinite medium would be justifiable as long as the arrival of waves is not affected by the
reflected waves from the boundaries of the specimen.

Assuming that the medium is initially at rest, the Laplace transformation of eqns (3) and (4),
after some algebraic manipulations, gives the expression for the matrix displacement as

(5)

A similar expression for the fiber displacement is not repeated here. Here s is the Laplace
parameter and the constant b, expressed in terms of the constants in Ref. [8], may be written as

(6)

The parameters

At2 = 2( 2 12 4) [VCo2 +S2(C/ +C2
2
) ± V([VCo2 + S 2(C.

2 +c/)f - 4s 2
(S2 +v 2)(c/c/ - C3

4»]
Cl C2 -C3

(7)

are the roots of the equation

(8)

We note that eqn (8) becomes the dispersion relation derived by Hegemier[8] when the
Laplace parameter s is replaced by iw. Invoking the condition of real wave speeds (Ad, the
cut-off frequency We can be calculated.

A suitable contour for evaluating the integrals in eqn (5) is depicted in Fig. 8. In the following
discussions, the integral was evaluated numerically based on the material constants of the
representative specimen A-4 shown in Table 1. Equation (5) obviously suggests the existence of
two waves in accordance with parameters A. and A2• By evaluating the contour enclosed by the

tThe notations used here are consistent with those used in Ref. [8].
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1m

iw

Fig. 8. Integration contour of eqn (5).

large semi-circle on the right half-plane, and making use of the Jordan's lemma, the wave speeds
can be expressed as

(9)

The propagation speeds of these two waves depend upon the material properties of the fiber and
the matrix and the fiber geometry. They are independent of the angular frequency of the wave.

The poles s = ± iw, contribute to the steady-state solution of eqn (5). After considerable
computations, the results may be summarized as follows: Corresponding to AI and A2 , the two
waves are found to propagate with speeds VI = 0.514 cmlll sec, and V2 = 0.248 cmlll sec. Both
waves have the form

(10)

where I = 1,2 implies the corresponding contribution from the parameters AI and A2 , and M, and
FI are the amplitude of the matrix and the fiber waves respectively.

The amplitudes MI and g are frequency dependent. They are plotted versus the frequency in
Fig. 7 for I = I and 2 respectively. The relationship between the phase velocity c, and the
frequency is consistent with that shown in Fig. 2. The cut-off frequency is We = 0.168 mHz.
Consequently the urwave does not exi~. when the driving frequency is lower than w,.

Equating the expression A1
2

- A/ in the denominator of the integrand of eqn (5) to zero results
in four branch points s 1,2 = ± ( - 0.45 +0.72 i) x 1016 and 53.4 = ± (0.45 +0.72 i) x 106

• It can be
shown that the contributions due to these branch points cancel each other due to their
symmetrical properties. The parameters A1 and A2 in the exponentials of eqn (5) contribute three
more branch points at 0, ± 1.036 x 106 i. Integration along the branch contour yields an integral of
the same expression as the Love-Rayleigh integral. This integral contributes to the small
oscillations superimposed on the main pulse as demonstrated by Hegemier[8] and Sve[17]. After
considerable numerical manipulations, it can be shown that the contributions from this integral
are three orders of magnitude smaller than the contributions from the poles s = ± iw in the
present case.

(b) Wave motions based on the effective stiffness theory [16]
Consistent with the experimental arrangement, a simplified equation of motion for the wave

motions in a fiber-reinforced specimen was recently developed by Achenbach[16] based on the
effective stiffness theory. The equation has the form

(\1)
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where

701

. (1T r-a)M = V(1T)b SID ---
2b-a

r = a is the radius of the fiber
r = b is the radius of the unit cell

and

al = 1] [At +2ILtl +(1-1] )CAm +21Lm)

as = [:2 (1-1] 1/2)2 +.; (1 - 1] 1/2)] 1T 1/
2b (Am +21Lm)

a6 = [:2 (1-1] 1/2)2 (~; +D+1] 1/2(1_1] 1/2)] 1Tb 2(Am+21Lm)

[
1T (1T2 ) 1T

3

1/2 1 ]a7 = "2 4 - 1 +4 1] 1- 1] 1/2 ILm

b
l
= [:2 (1- 1] 1/2)2 +.; 1] 1/2(1_ 1] 1/2)] 1T 1/2bpm

b2= [:2 (1-1] 1/2)2 (~; +D+1] 1/2(1_1] 1/2)] 1Tb 2Pm

. Area of fiber
where 1] = volume densIty =A f IIrea 0 ce

(12)

Notations Pt and pm refer to fiber and matrix densities respectively.
Following the same procedure as described in section (a), the matrix displacement can be

expressed as

where

6 = L IM3 - L 3M1 +L2M3 - M2L 3

L 4M 3 -M4L 3

and AI and A2 are the roots of equation

A4+ [s2(LIM4 +L 3M2- L2M3 - L4M1) +Ms(L 3 +L4)]A 2

M 3L 4 -L 3M 4

+ [S4(L2MI - L 1M2) - s2Ms(L I+L2)] = 0
M 3L 4 -L 3M 4 •

(13)

(14)

Equations (13) and (14) have the same form as eqns (5) and (8). Applying the same computational
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procedure, the propagation speeds of the waves are found to be of the form

The dispersion curves computed from eqn (14), and the amplitudes ME and Pi of the steady-state
waves computed from eqn (13) are plotted in Fig. 2 and Fig. 7 respectively with the results
computed from the mixture theory. The agreement is reasonably good.

DISCUSSION AND CONCLUSION

Based on the wave motion analysis presented in the previous section, it can be concluded that
the main bodies of the wave are the two steady state waves due to poles s :;;: ± iw. These two
waves propagate with a constant speed v. and V2 depending upon the material properties and the
fiber geometry of the composite.

The amplitude-frequency relationship of two waves based on the mixture and the effective
stiffness theories are shown in Fig. 7. Wherein MI, M2, and F I, F2 are denoted as the amplitudes
of two waves in the matrix and in the fiber respectively. In view of Fig. 7, the following
experimental observation on the behavior of waves in the specimen may be expected.

(1) For w < w~ (0.168 mHz), the micro-motion measurement should reveal a single wave, M1

for the matrix and F I for the fiber. The macro-motion measurement should also reveal a single
wave M.+F•.

(2) For w slightly higher than We, the micro-motion measurement should reveal two waves in
the matrix, M. and M 2, and two waves in the fiber, F1 and F 2• The macro-motion measurement
should also reveal two waves F1 +MI and F2 +M2•

(3) For w > w~, the micro-motion measurement should reveal a single wave in the matrix MI ,

and a single wave in the fiber F 2• The macro-motion measurement should reveal two waves, M.
and F2•

The above conclusions are clearly supported by the experimental results shown in Fig. 4, Figs.
6a and 6b. Figure 4 shows a series of oscilloscope records of the macro-motion measurements. It
clearly reveals the existence of two waves for frequencies higher than w~. The measured wave
speeds are tabulated along with those calculated from both theories in Table 1. The agreement,
although slightly in favor of the effective stiffness theory, is good with the predictions from both
theories. It should be mentioned here that the arrival times of the waves were determined directly
from the oscilloscopic records. An exact time is difficult to establish in this case, Based on the
wave speed measurement on the standard aluminum block, the accuracy of the measured wave
velocities is estimated to be within two percent. The relationship between the phase velocity CI

and frequency of these two waves establishes the dispersive characteristics of the waves as
shown in Fig. 2. The experimental verification of these dispersion curves can only be achieved by
phase angle measurement of the waves. This requires a precise frequency and wave form control.
The accuracy of the frequency generator and power amplifier used in this investigation is ± 1%.
Consequently, reliable phase angle measurements could not be made in this investigation.

The fiber and matrix motions for the micro-motion measurements are shown in Figs. 6a and 6b.
In general, these motions agree with the analytical predictions. The wave speeds measured in this
portion of the experiment agrees well with those determined from the macro-motion
measurements. The amplitudes of waves show, however, some substantial discrepancies from
the theoretical predictions. These discrepancies may be attributed to the following two reasons:
(1) The displacement produced by the driving crystal disk is difficult to control and measure
accurately. Equation (1) is only an approximate formula for estimating the displacement of the
disk produced by the applied voltage. The exact calibration equation may be non-linear. It is well
known that the actual displacement of the crystal disk depends upon not only the applied voltage
but also the relative stiffness between the crystal disk and the specimen as well as the applied
pressure and the frequency[20]. Consequently, the input displacement based on eqn (1) is not
accurate especially at the high frequency range. (2) In order to separate these two expected
waves, thick specimens were used in the investigation. Attenuation of waves introduces further
errors in the final results. The results, nevertheless, display clearly the behavior of waves in the
specimen.
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The experimental results presented in this investigation suggest that both the mixture theory
and the effective stiffness theory provide an excellent prediction on the behavior of longitudinal
waves propagating in the direction of reinforcing fibers. In the case of a practical fiber-reinforced
composite, the arrival times of these two waves are separated by only a fraction of a
micro-second. Based on the constituent data of the quartz fiber-reinforced phenolic [8, 13,14], the
propagation speeds of these two waves are 0.3115 and 0.4238 cm/J.Lsec respectively. Thus in a thin
specimen, these two waves would be diffcult to separate in practice.
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